DEPARTMENT OF CHEMISTRY INTRODUCTION OF DEPARTMENT

The Department of Chemistry at Udaynarayanpur Madhabilata Mahavidyala offers a 3-year B.Sc course under Calcutta University, following both CBCS and CCF. Our objectives include achieving excellence in teaching through periodic class tests, seminars, and group discussions. We also emphasize the all-round development of students beyond classroom teaching. To enhance the practical understanding of theoretical concepts, the department organizes educational tours for students. These tours provide students with fresh ideas about other curriculum activities and the environment.

LABORATORY

FACULTY PROFILE

NAME	DESIGNATION	TEACHING EXPERIENCE	QUALIFICATION
Dr. AMIT MAITY	SACT	6 YEAR	M.Sc., Ph.D
MRIDULA HUDATI	SACT	7YEAR	M.Sc,

Lesson Plan (Chemistry)

Session-2023-2024, Semester-1

Theoretical program: CC1-T

Chapter	Syllabus	Hours for completion	Teaching method	Teacher name
Extra nuclear structure of atoms and periodicity	Wave-particle duality, de Broglie hypothesis, Heisenberg Uncertainty principle, Schrodinger equation, s,p,d,f orbitals, Aufbau Principle, Pauli's exclusion principle, Hund's rule, Slater's rule. Modern periodic table, atomic and ionic radii, ionisation energy, electron affinity, electro negativity, periodic trends, Electronegativity scales(Pauling, Mulliken and Allred-Rochow Scale), Inert pair effect.	15	lecturer	Amit Maity
Valence Bond Theory	Nomenclature of organic compounds, hybridisation, shapes and structure of molecules, DBE, Resonance, resonance energy.	2		Mridula Hudati
Electronic displacements	Inductive effect, Steric effect	1		Mridula Hudati
MO theory	Idea about HOMO, LUMO and SOMO, concept of	5		Mridula

	aromaticity,Huckel's rule		Hudati
Physical properties			Mridula Hudati
Sterochemistry-1	Concept of asymmetry of organic compounds, Fischer, Sawhorse, flying wedge, Newman projection formula, concept of chirality, enantiomers, diastereomers, chiral centre	5	Mridula Hudati
Thermodynamics-1	Concept of system, State of a system, extensive and intensive properties, partial and exact differential, path and state function, concept of heat and work, Zerothb law of thermodynamics, 1 st law of thermodynamics, internal energy, enthalpy, heat capacity, Cp and Cv and their relationship, adiabatic process and isothermal process, calculation of q, w, H, U, Hess's law, Kirchhof,s law	9	Amit Maity
Chemical Kinetics-1	Order and molecularity of a reaction, Rate law of zero, 1 st and 2 nd order reaction, determination of order of a reaction, RDS, opposing, consecutive, parallel reaction, Arrhenius equation	6	Amit Maity

Practical Program:CC1-P

Chapter	syllabus	Hours of completion	Teaching method	Name of the teacher
Basic	1) Calibration and use of	6	practical	Amit Maity

	apparatus 2) preparation of primary standard solution		
Acid-Base titration	 3)Standardization of NaOH by standard oxalic acid solution 4)Estimation of acetic acid in commercial vinegar 	6	Mridula Hudati
Oxidation- Reduction titrimetry	 5)Standardization of KMnO4 by standard oxalic acid solution 6)Estimation of Fe(II) using standard KMnO4 solution 	6	Amit Maity

Theoretical program: SEC and IDC

Chapter	syllabus	Hours for completion	Teaching method	Name of the teacher
Dairy products	Composition of milk, milk products, estimation of added water in milk, analysis of fat, minerals in milk and butter. Beverages: analysis of caffeine in coffe and tea, chicory in coffe, chloral hydrate in toddy, methyl alcohol in alcoholic beverages.	6	Lecturer	Mridula Hudati

Food additives, adulterants, contaminants	Food preservatives like benzoates, propionates, sorbates, disulphides, artificial sweeteners: Aspartame, sachharin, dulcin, sucralose, sodium cyclamate. Flavours: vanillin, alkyl esters, monosodium glutamate.	6	Amit Maity
Artificial food colorants	Coal tar dyes, analysis of pesticides in food, nonpermitted colors.	3	Mridula Hudati
Vitamins	Classification and nomenclature, sources, deficiency diseases, structure of vitamin A1, B1, C, D, E and K1.	5	Amit Maity
Oil and fats	Composition of edible oils, detection of purity, rancidity in fat and oils, adulterants test, Halphen test	5	Mridula Hudati
Soaps and detergents	Definition, classification, manufacturing of soaps, detergents, composition and and uses.	5	Amit Maity
Chemical and renewable energy sources	Principle and application of primary and secondary batteries, fuel cell, solar enrgy.	4	Amit Maity
Polymers	Basic concept, classification and characteristics of polymers, Application in electronics, automobile, medical and aerospace materials, plastic waste management, environment friendly polymers.	6	Amit Maity

Tutorial program: SEC and IDC

Chapter	Syllabus	No. of hours for completion	Teaching method	Name of the teacher
Estimation of vitamin C	Estimation of vitamin C	4	practical	Amit Maity
Determination of iodine number of oil	Determination of iodine number of oil	4		Mridula Hudati

Semester-II Session-2023-2024

Theoretical program:CC2-Th

Chapter	Syllabus	Hours of completion	Teaching method	Teacher Name
Kinetic theory and gaseous state	Concept of pressure and temperature from kinetic theory of gas, Maxwell speed distribution, kinetic energy, calculation of average, root mean square, most probable speed, collision of gas molecules, mean free path, wall collision and rate of collision, principle of equipartition of energy.	8	lecture	Mridula Hudati
Real gas and virial equation	Deviation of gases from ideal behaviour, compressibility factor, Boyle temperature, Andrew and Amagat plot, van der wall equation, critical state, critical constants, law of corresponding state, virial equation, intermolecular forces	6		Amit Maity
Chemical bonding-I	 i) Ionic bond: General characteristics, lattice energy, Born-Lande equation, Born Haber cycle and its application, solvation energy, defects in solids, solubility 	15		Amit Maity

	energetics of dissolution process. ii) Covalent bond: Polarizing power and polarizability, Fazan's rule, valence bond theory, hybridisation, Bent's rule, dipole moments, VSEPR theory, shape of molecules and ions.		
Stereochemistry- II	Chirotopicity, stereogenicity, concept of pseuodoasymmetry for ABA type systems, R/S, threo/erythron and meso nomenclature of compounds, E/Z description of alkene, optical activity of chiral compounds, specific rotation, racemic compounds, racemisation, resolution of acids and bases, optical purity, enantiomeric excess.	8	Mridula Hudati
Reactive intermediates	Carbocations, nonclassical carbocations, carbanions, carbon radical, electrophilic/ nucleophilic behaviour of reactive intermediates.	2	Amit Maity
Reaction thermodynamics	Free energy and equilibrium, enthalpy and entropy factor, calculation of enthalpy change, intermolecular and intramolecular reactions	2	Mridula Hudati
Reaction kinetics	Rate constant and free energy of activation, free energy profile for first step, two step reactions, catalysed reactions, Hammond's postulate.	2	Mridula Hudati
Substitution reaction	Free radical substitution reaction, halogenation of alkanes, mechanism, Hammond's postulate.	2	Amit Maity

Practical program: CC2-P

Chapter	Syllabus	Hours of completion	Teaching method	Name of the Teacher
Basic Titration	Standardization of Na2S2O3 solution against standard K2Cr2O7 solution	4	practical	Amit Maity
Iodo/ Iodimetric titration	Estimation of vitamin C	4	practical	Mridula Hudati
Estimation of metal content in some selective sample	Estimation of Cu in brass	4	practical	Amit Maity

Lesson Plan (Chemistry)

Session-2023-2024, Semester-3

Theoretical program: CC3-T

		1	r	
Chapter	Syllabus	Ho	Te	Te
		urs	ac	ac
		for	hi	he
		co	ng	r
		mp	m	na
		leti	et	m
		on	ho	e
			d	
AromaticSu	Electrophilicaromaticsubstitution		lec	Μ
bstitution	Mechanisms and evidences in favour of it including	12	tur	ri
	PKIE; orientation and reactivity; reactions:		er	du
	nitration, nitrosation, sulfonation, halogenation, Friedel-			la
	Craftsreaction;one-			Η
	carbonelectrophiles(reactions:chloromethylation,Houb			ud
	en-Hoesch, Vilsmeier-Haack, Reimer-Tiemann, Kolbe-			ati
	Schmidt);/ <i>pso</i> substitution.			
	// · · · · · · · · · · · · · · · · · ·			
	Nucleophilicaromaticsubstitution			

	Addition- eliminationmechanismandevidencesinfavourofit;S _№ 1me chanism; <i>cine</i> substitution(benzynemechanism),structur eofbenzyne. BirchReductionofbenzenoidaromatics Benzene,Alkylbenzene, Anisole,Benzoicacid(withmechanism).		
GeneralTreat mentofReacti onMechanis m–II	Conceptof organic acidsand bases ConceptofpK _a andpK _{aH} ,effectofstructure,substituentands olventonacidityandbasicity;protonsponge. Tautomerism: Basic difference between tautomerism and resonance, prototropy (keto-enol, phenol-keto); composition oftheequilibriumindifferentsystems(simplecarbonyl;1,2- and1,3-dicarbonylsystems,phenolsandrelatedsystems), factors affecting keto-enol tautomerism, basic ideas about valence tautomerism and ring- chaintautomerism.	8	M ri du la H ud ati
Substitution andEliminati onReactions :	Nucleophilicsubstitution reactions Substitutionatsp ³ centre[systems:alkylhalides,allylhalid es,benzylhalides,alcohols,ethers,epoxides, α - halocarbonyls]:mechanisms (with evidence),relative rates& stereochemical features: S _N 1, S _N 2, S _N 2', S _N 1'(allylic rearrangement) and S _N i; effects of solvent, substrate structure, leaving group and nucleophiles(including ambident nucleophiles, cyanide & nitrite); substitutions involving NGP (with heteroatoms andphenylgroups). Eliminationreactions E1, E2, E1cB and Ei (pyrolytic <i>syn</i> eliminations); formation of alkenes and alkynes; mechanisms (withevidence),reactivity,regioselectivity(Saytzeff/Hofm ann)andstereoselectivity;comparisonbetweensubstituti onandelimination reactions, comparisonbetween	12	A mi t M ait y

	nucleophilicityand basicity.		
Chemistryof	Addition toC=C		A
alkenesanda	Mechanism(with evidence wherever applicable),	12	mi
lkynes	reactivity, regioselectivity (Markownikoff andanti-		t
	Markownikoffadditions) and stere oselectivity; reactions: h		Μ
	ydrogenation, halogenation, hydrohalogenation, hydratio		ait
	n,oxymercuration-demercuration,hydroboration-		у
	oxidation, epoxidation, synand anti-		
	hydroxylation, ozonolysis, addition of singlet and triplet car		
	benes;Simmons-		
	Smithcyclopropanationreaction; electrophilicad dition to		
	1,3-		
	butadiene;conceptofkineticandthermodynamiccontrolo		
	fproducts;radicaladdition:HBraddition;mechanismofally		
	licandbenzylicbrominationincompetitionwithbrominatio		
	nsacross C=C; use ofNBS; interconversionof <i>E</i> and <i>Z</i>		
	alkenes.		
	AdditiontoC=C(in comparison toC=C)		
	Mechanism, reactivity, regioselectivity (Markownikoffand		
	anti-		
	Markownikoffaddition)andstereoselectivity;reactions:hy		
	drogenation,Hg(II)ioncatalysedhydration,hydroboration		
	-oxidation,dissolvingmetal reductionof alkynes(Birch);		
	reactions ofterminal alkynesbyexploringitsacidity.		

Practical Program:CC3-P

Chapter	syllabus	Hour	Tea	Na
		s of	chin	me
		com	g	of
		pleti	met	the
		on	hod	tea
				che
				r
Identificati	Oxalicacid, tartaricacid, citricacid, succinicacid, resorcinol,		prac	Mri
onofPure	urea, glucose, canesugar, benzoicacidands alicylic acid	12	tical	dul
Singleorgan				a
icCompoun				Hu
d				dati
Identificati	Formicacid, aceticacid, ethylalcohol, acetone, aniline,			Mri
onofPure	dimethylaniline,benzaldehyde,chloroformandnitrob	12		dul
Singleorgan	enzene			a
icCompoun				Hu
d				dati

Semester-4 Session-2023-2024

Theoretical program:CC4-Th

Chapter	Syllabus	Hou	Tea	Te
		rs of	chi	ac
		com	ng	her
		pleti	met	Na
		on	hod	me
Chemicalbonding-	Molecularorbitalconceptofbonding	20	lect	A _.
11:	The approximations of the theory, Linear combination of atomic orbitals (LCAO) (elementary pictorialapproach): sigma and pi bonds and delta interaction, multiple bonding. Orbital designations: gerade,ungerade,HOMO, LUMO.Orbitalmixing,.MOdiagramsofH ₂ ,Li ₂ ,Be ₂ , B ₂ ,C ₂ ,N ₂ ,O ₂ ,F ₂ ,andtheirions wherever possible; Heteronuclear molecular orbitals: CO, NO, NO ⁺ , CN ⁻ , HF, BeH ₂ , CO ₂ and H ₂ O. Bondproperties:bond orders,bond lengths. MetallicBond Qualitativeideaofvalencebondandbandtheories.		ure	mit Ma ity
	Semiconductorsandinsulators, defects insolids. WeakChemicalForces Hydrogen bonding (theories of hydrogen bonding, valence bond treatment), receptor- guest interactions, Halogenbonds. Effects of chemicalforce, melting and boilingpoints.			
Acidsand bases	Acid-Baseconcept Arrhenius concept, theory of solvent system (in H ₂ O, NH ₃ , SO ₂ and HF), Bronsted-Lowry's concept, LuxFlood concept, Lewis concept, group characteristics of Lewis acids, solvent levelling and differentiatingeffects.Relative strengthofacids, Pauling's rules.HSABprinciple. Thermodynamicacidityparameters	10		Mr idu la Hu dat i
	Drago- Waylandequation.Superacids,Gasphaseaciditya ndprotonaffinity.			

	Acid-baseequilibriainaqueoussolution Protontransferequilibriainwater,pH,buffer.Acid- baseneutralizationcurves;indicator,choiceofind icators.			
Theoreticalprincip lesofinorganicqua litative analysis	Basic principles involved in analysis of cations and anions and solubility products, common ion effect.Principleinvolvedinseparationofcationsint ogroupsandchoiceofgroupreagents.Interferinga nions(fluoride,borate, oxalateandphosphate)and needto remove themafter GroupII.	8	1]	A mit Ma ity

Practical program: CC4-P

Chapter	Syllabus	Ho	Te	N
		urs	ac	a
		of	hi	m
		co	ng	e
		mp	m	of
		leti	et	th
		on	ho	e
			d	Te
				ac
				he
				r
Qualitativesemimicroanalysisofm	CationRadicals	10	pr	A
ixturescontainingthreeradicals.E	Na ⁺ ,K ⁺ ,Ca ²⁺ ,Sr ²⁺ ,Ba ²⁺ ,Al ³⁺ ,Cr ³⁺ ,Mn ²⁺ /		act	m
mphasisshouldbegiventotheunde	Mn ⁴⁺ ,Fe ³⁺ ,Co ²⁺ /Co ³⁺ ,Ni ²⁺ ,Cu ²⁺ ,Zn ²⁺ ,P		ica	it
rstanding	b ²⁺ ,Cd ²⁺ ,Bi ³⁺ ,Sn ²⁺ /Sn ⁴⁺ ,As ³⁺ /As ⁵⁺ ,Sb ³⁺		1	M
ofthechemistryofdifferent	^{/5+} , NH ⁺ , Mg ²⁺ .			ait
reactions:				У
Qualitativesemimicroanalysisofm	AnionRadicalsF,Cl,Br,BrO ₃ ,I,IO ₃ ,SCN,S ² ,SO ² ,NO ₃ ,NO ₂	10	pr	A
ixturescontainingthreeradicals.E	$,1,10_{3},5CN,5,5O,NO_{3},NO_{2},PO^{3},AsO^{3-},BO_{3}^{3},CrO^{2-}/CrO^{2-}$		act	m
mphasisshouldbegiventotheunde	$Fe(CN)_{6}^{4}$,		ica	it
rstanding			1	Μ
ofthechemistryofdifferent	Fe(CN) ₆ ³⁻ .			ait

reactions:				У
Qualitativesemimicroanalysisofm ixturescontainingthreeradicals.E mphasisshouldbegiventotheunde rstanding ofthechemistryofdifferent reactions:	InsolubleMaterials Al ₂ O ₃ (ig),Fe ₂ O ₃ (ig),Cr ₂ O ₃ (ig),SnO ₂ ,SrSO ₄ ,BaSO ₄ ,CaF ₂ ,PbSO ₄ .	6	pr act ica 1	A m it M ait y

Lesson Plan (Chemistry)

Session-2023-2024, Semester-5

Theoretical program: CC5-T

Chapter	Syllabus	Но	Te	Te
Chapter	Syndous	urs	ac	ac
		for	hin	he
		co	g	r
		mpl	me	na
		etio	tho	m
		n	d	e
Thermodyn	SecondLaw		lec	Μ
amics-II	NeedforaSecondlaw; statement of the second law of the rmo	18	tur	rid
	dynamics;Conceptofheatreservoirsandheatengines;Carn		er	ul
	otcycle;Carnotengineandrefrigerator;Kelvin–			a
	PlanckandClausiusstatementsand equivalence of the			Η
	two statements with entropic formulation; Carnot's			ud
	theorem; Values of §dQ/T andClausius inequality;			ati
	Physical concept of Entropy; Entropy is a measure of the			
	microscopic disorder of thesystem. Entropy change of			
	systems and surroundings for various processes and			
	transformations; Entropyandunavailablework;			
	Temperature – Entropydiagram.			
	UsefulworkandTheGibbsandHelmholtzfunction.Change			
	satconstant T, P. Application to electric work. Criteria for			
	spontaneity and equilibrium. Gibbs- Helmholtz			
	equation, The Gibbs Function and useful			
	workinBiological systems.Gibbsfreeenergyand			
	spontaneous phase transition.			

	Maxwell'srelations;Joule- Thomsonexperimentanditsconsequences;inversiontem perature;Joule-Thomsoncoefficient foravan der Waals gas; General heat capacityrelations SystemsofVariableCompositions State functions for system of variable compositions. Criteria of equilibriumand spontaneity in systems ofvariable composition. Partial molar quantities, dependence of thermodynamic parameters on composition;Chemicalpotentialasanescapingtendency.G ibbs- Duhemequation,EntropyandGibbsfunctionformixingofi dealgases,thechemicalpotentialofidealmixtures.TheFug acityfunctionofapurerealgas.Calculationof the fugacity of a van der Waals gas using compressibility factor. Definitionsof Activitiesand activitycoefficients.Choiceof standard states		
Application sofThermo dynamics – I	ChemicalEquilibrium Thermodynamicconditionsforequilibrium,degreeofadva ncement;van'tHoff'sreactionisotherm(deduction from chemical potential); Variation of free energy with degree of advancement; Equilibriumconstant and standard Gibbs free energy change; Van't Hoff's reaction isobar and isochore from differentstandardstates; LeChatelier'sprincipleanditsderivation,variationofequili briumconstantunderdifferentconditionsNernst's distribution law;Solvent Extraction.	8	A mi t M ait y
ELECTRO CHEMIS TRY-I:	(i) Conductance Ion conductance; Conductance and measurement of conductance, cell constant, specific conductance andmolar conductance; Variation of specific and equivalent conductance with dilution for strong and weakelectrolytes; Kohlrausch's law of independent migration of ions; Equivalent and molar conductance atinfinite dilution and their determination for strong and weak electrolytes; Debye-Huckel limiting law- briefqualitative description. Estimation of activity coefficient for electrolytes using Debye-Huckel limiting	14	A mi t M ait y

law.Ostwald'sdilutionlaw;lonicmobility;Applicationofco nductancemeasurement(determinationof solubility product and ionic product of water); Conductometric titrations. Transport number, Principles ofMoving- boundarymethod' Ionic Equilibrium: Strong, moderateandweakelectrolytes,degree ofionization, factorsaffecting degreeof ionization,ionizationconstantandionicproductofwater.lo nizationofweakacidsandbases,pHscaleSalthydrolysis- calculation of hydrolysis constant, degree of hydrolysis and pH for different salts.Determination ofhydrolysisconstantconductometrically.Buffersolutions ;derivationofHendersonequationanditsapplications;buf fer capacity, buffer range, buffer action. Theory of acid–base indicators; selection ofindicatorsand theirlimitations.		
---	--	--

Practical Program:CC5-P

Chapter	syllabus	Hour	Teac	Na
		s of	hing	me
		comp	met	of
		letion	hod	the

				teac her
PhysicalChem istryPracticals	 Determinationofrateconstantofthereactionb etweenH₂O₂andacidifiedKIsolutionusingClock reaction. Determinationoftherateconstant forthedecompositionofH₂O₂usingFeCl₃ascataly st. Determinationoftherateconsta ntforthefirstorderacidcatalyzedh ydrolysisofan ester. Tostudythe kineticsofthe inversionofcanesugar usingapolarimeter. 	20	prac tical	Mri dul a Hu dati and Am it Mai ty

Semester-6 Session-2023-2024

Theoretical program:CC6-Th

Chapter	Syllabus	Но	Te	Te
		urs	ac	ac

Stereoche mistry–III	Conformation Conformational nomenclature: eclipsed, staggered, gauche, syn and anti; dihedral angle, torsion angle;energybarrierofrotation,conceptoftorsionalandster icstrains;relativestabilityofconformersonthebasisofsterice ffect,dipole-dipoleinteractionandH- bonding;butanegaucheinteraction;conformationalanalysi sofethane,propane, <i>n</i> -butane,and 2-methylbutane;1,2- dihaloalkanesandethyleneglycol	of co mp leti on 6	hi ng me th od lec tur e	he r N a m e A mi t M ait y
Chemistry ofcarbonyl Compound s	NucleophilicAddition to C=O Structure andreactivity of carbonyl compounds; mechanism (with evidence), reactivity, equilibrium andkineticcontrol;formationofhydrates,cyanohydrinsand bisulphiteadduct;nucleophilicaddition- eliminationreactionswithalcohols,thiolsandnitrogen- basednucleophiles;reactions:benzoincondensation, Cannizzaro and Tischenko reactions, reactions with ylides: Wittig and Corey-Chaykovskyreaction; Rupe rearrangement, oxidations and reductions: Clemmensen, Wolff-Kishner, LiAlH ₄ , NaBH ₄ ,MPVO redox equilibrium, acyloin condensation; oxidation of alcohols with PDC and PCC;periodic acidandlead tetraacetateoxidation of 1,2- diols.	24		M ri du la H ud ati an d A mi t M ait y
	Exploitation of acidityof α-Hof C=O Formationofenolsandenolates;kineticandthermodynamic enolates;reactions(mechanismwithevidence):halogenati onofcarbonylcompoundsunderacidicandbasicconditions, Hell-Volhard-Zelinsky(H.V.Z.)reaction,nitrosation,SeO ₂ diethylmalonateandethylacetoacetate;specificenolequiv alents(lithiumenolates,enaminesandsilylenolethers)inco nnection withalkylation, acylationand aldol typereaction.			

	Nucleophilicadditiontoα,β-unsaturatedcarbonylsystem General principle and mechanism (with evidence); direct and conjugate addition, addition of enolates(Michaelreaction), Robinson annulations reaction.		
	Substitutionatsp²carbon(C=Osystem) Mechanism (with evidence): B _{AC} 2, A _{AC} 2, A _{AC} 1, A _{AL} 1 (in connection to acid and ester); acid derivatives:amides,anhydrides&acylhalides(formation and hydrolysis includingcomparison).		
Organome tallics	Grignard reagents , Gilman cuprates: preparation and reactions (mechanism with evidence); addition ofGrignard to carbonyl compounds; substitution on - COX; Conjugate addition by Gilman cuprates; Corey- House synthesis; abnormal behaviour of Grignard reagents; comparison of reactivity among Grignard, andorganocopperreagents;Reformatskyreaction; concept of umpolung.	4	A mi t M ait y

Practical program: CC6-P

Chapter	Syllabus	Hou	Tea	Na
_		rs of	chi	me
		com	ng	of
		pleti	met	the
		on	hod	Tea
				che
				r
Qualitativeanalysisofs	1. Detectionofspecialelements(N,S,Cl)byLas	20	pra	Mr
inglesolidorganiccom	saigne'stest		ctic	idu
pound	2. Solubilityandclassification(solvents:H ₂ O,5		al	la
	%HCl,5%NaOHand5% NaHCO3)			Hu
	3. Detectionofthefollowingfunctionalgrou			dat
	psbysystematicchemicaltests:aromaticami			i
	no(Ar-NH2),aromaticnitro(-NO2),amido(-			

CONH2, including imide), phenolic-		
OH, carboxylicacid (-COOH), carbonyl		
(distinction between -CHO and >C=O);		
only one test for each functional group is		
to be		
reported.Eachstudent,duringlaboratoryse		
ssion, is required to carry out qualitative chem		
icaltestsforallthe specialelementsand		
thefunctional groups		
inknownandunknown(at		
leastsix) organic compounds.		

FUTURE PLANS

- 1. Improvement of chemistry laboratory
- 2 . To introduce chemistry Honours
- 3 . To setup departmental library
- 4 . Arrange seminar